169 research outputs found

    Augmented Mitotic Cell Count using Field Of Interest Proposal

    Full text link
    Histopathological prognostication of neoplasia including most tumor grading systems are based upon a number of criteria. Probably the most important is the number of mitotic figures which are most commonly determined as the mitotic count (MC), i.e. number of mitotic figures within 10 consecutive high power fields. Often the area with the highest mitotic activity is to be selected for the MC. However, since mitotic activity is not known in advance, an arbitrary choice of this region is considered one important cause for high variability in the prognostication and grading. In this work, we present an algorithmic approach that first calculates a mitotic cell map based upon a deep convolutional network. This map is in a second step used to construct a mitotic activity estimate. Lastly, we select the image segment representing the size of ten high power fields with the overall highest mitotic activity as a region proposal for an expert MC determination. We evaluate the approach using a dataset of 32 completely annotated whole slide images, where 22 were used for training of the network and 10 for test. We find a correlation of r=0.936 in mitotic count estimate.Comment: 6 pages, submitted to BVM 2019 (bvm-workshop.org

    Wuerstchen: Efficient Pretraining of Text-to-Image Models

    Full text link
    We introduce Wuerstchen, a novel technique for text-to-image synthesis that unites competitive performance with unprecedented cost-effectiveness and ease of training on constrained hardware. Building on recent advancements in machine learning, our approach, which utilizes latent diffusion strategies at strong latent image compression rates, significantly reduces the computational burden, typically associated with state-of-the-art models, while preserving, if not enhancing, the quality of generated images. Wuerstchen achieves notable speed improvements at inference time, thereby rendering real-time applications more viable. One of the key advantages of our method lies in its modest training requirements of only 9,200 GPU hours, slashing the usual costs significantly without compromising the end performance. In a comparison against the state-of-the-art, we found the approach to yield strong competitiveness. This paper opens the door to a new line of research that prioritizes both performance and computational accessibility, hence democratizing the use of sophisticated AI technologies. Through Wuerstchen, we demonstrate a compelling stride forward in the realm of text-to-image synthesis, offering an innovative path to explore in future research

    Deep Denoising for Hearing Aid Applications

    Full text link
    Reduction of unwanted environmental noises is an important feature of today's hearing aids (HA), which is why noise reduction is nowadays included in almost every commercially available device. The majority of these algorithms, however, is restricted to the reduction of stationary noises. In this work, we propose a denoising approach based on a three hidden layer fully connected deep learning network that aims to predict a Wiener filtering gain with an asymmetric input context, enabling real-time applications with high constraints on signal delay. The approach is employing a hearing instrument-grade filter bank and complies with typical hearing aid demands, such as low latency and on-line processing. It can further be well integrated with other algorithms in an existing HA signal processing chain. We can show on a database of real world noise signals that our algorithm is able to outperform a state of the art baseline approach, both using objective metrics and subject tests.Comment: submitted to IWAENC 201

    A large-scale dataset for mitotic figure assessment on whole slide images of canine cutaneous mast cell tumor

    Get PDF
    We introduce a novel, large-scale dataset for microscopy cell annotations. The dataset includes 32 whole slide images (WSI) of canine cutaneous mast cell tumors, selected to include both low grade cases as well as high grade cases. The slides have been completely annotated for mitotic figures and we provide secondary annotations for neoplastic mast cells, inflammatory granulocytes, and mitotic figure look-alikes. Additionally to a blinded two-expert manual annotation with consensus, we provide an algorithm-aided dataset, where potentially missed mitotic figures were detected by a deep neural network and subsequently assessed by two human experts. We included 262,481 annotations in total, out of which 44,880 represent mitotic figures. For algorithmic validation, we used a customized RetinaNet approach, followed by a cell classification network. We find F1-Scores of 0.786 and 0.820 for the manually labelled and the algorithm-aided dataset, respectively. The dataset provides, for the first time, WSIs completely annotated for mitotic figures and thus enables assessment of mitosis detection algorithms on complete WSIs as well as region of interest detection algorithms
    • …
    corecore